Schiller, U.D., Kuksenok, O., Lattice-Boltzmann Modeling of Multicomponent Systems: An Introduction. In: Parrill, A.L. and Lipkowitz, K.B., Rev. Comput. Chem.31, Wiley, (2018). DOI:10.1002/9781119518068.ch1
Schiller, U.D., Wang, F., Multiscale simulation of transport phenomena in porous media: from toy models to materials models.MRS Commun.8, 358–371, (2018). DOI:10.1557/mrc.2018.29
Schiller, U.D., Krüger, T., Henrich. O., Mesoscopic modelling and simulation of soft matter.Soft Matter14, 9–26 (2017). DOI:10.1039/C7SM01711A
Book Chapters
Thutupalli, S., Fleury, J.-B., Schiller, U.D., Gompper, G., Herminghaus, S., Seemann, R., Hydrodynamics mediated collective motions in populations of microdroplets. In: Engineering of Chemical Complexity II, World Scientific, pp. 125–148 (2014). DOI:10.1142/9789814616133_0008
Regular Articles
Arumugam Kumar, G. R., Andrews, J. P., Schiller, U. D., Implementation of a ternary lattice Boltzmann model in LAMMPS.Comput. Phys. Commun.294, 108898 (2023). DOI:10.1016/j.cpc.2023.108898
Bao, X., Karthikeyan, N., Schiller, U. D., Iuricich, F., Application-oriented analysis of material interface reconstruction algorithms in time-varying bijel simulationsEurographics Proceedings (2022). DOI:10.2312/evs.20221104
Sharma, S., Wang, F., Rao, P.V.K., Agrawal, A.K., Jassal, M., Szenti, I., Kukovecz, Á., Rawal, A., Schiller, U.D., Unfolding the effects of decontamination treatments on the structural and functional integrity of N95 respirators via numerical simulations.Sci. Rep.12, 4191 (2022). DOI:10.1038/s41598-022-08150-y
Sharma, S., Wang, F., Kumar, S., Nawal, R.R., Kumar, P., Yadav, S., Szenti, I., Kukovecz, Á., Schiller, U.D., Rawal, A., Structural and Functional Integrity of Decontaminated N95 Respirators: Experimental Results.J. Ind. Text., 51, 7999S (2022). DOI:10.1177/15280837221082322
Wang, F., Schiller, U.D., Hysteresis in spreading and retraction of liquid droplets on parallel fiber rails.Soft Matter17, 5486-5498 (2021). DOI:10.1039/D1SM00126D
Shealy, B.T., Yousefi, M., Srinath, A.T., Smith, M.C., Schiller, U.D., GPU Implementation of the Lattice Boltzmann Method in Sparse Complex Geometries.IEEE Trans. Parallel Distrib. Syst.9, 61224-61236 (2021). DOI:10.1109/ACCESS.2021.3073667
Wang, F., Kumari, S., Schiller, U.D. (2020). Computational Characterization of Nonwoven Fibrous Media. II. Analysis of Microstructure Effects on Permeability and Tortuosity.Phys. Rev. Mater.4, 083804 (2020). DOI:10.1103/PhysRevMaterials.4.083804
Wang, F., Schiller, U.D., Computational Characterization of Nonwoven Fibrous Media: I. Pore-Network Extraction and Morphological Analysis.Phys. Rev. Mater.4, 083803 (2020). DOI:10.1103/PhysRevMaterials.4.083803
Groen, D., Richardson, R.A., Coy, R., Schiller, U.D., Chandrashekar, H., Robertson, F., Coveney, P.V., Validation of patient-specific cerebral blood flow simulation using transcranial Doppler measurements.Front. Physiol.9, 721 (2018). DOI:10.3389/fphys.2018.00721
S. Schmieschek, L. Shamardin, S. Frijters, T. Krüger, U.D. Schiller, J. Harting, and P.V. Coveney. LB3D: A parallel implementation of the Lattice-Boltzmann method for simulation of interacting amphiphilic fluids.Comput. Phys. Comm.217, 149–161 (2017). DOI:10.1016/j.cpc.2017.03.013
Derek Groen , Xiaohu Guo, James A. Grogan, Ulf D. Schiller, and James M. Osborne. Software engineering practices in academia. A case study comparison. (2015). arXiv:1506.05272
Schiller, U.D., Fleury, J.-B., Seemann, R., Gompper, G., 2015. Collective waves in dense and confined microfluidic droplet arrays.Soft Matter11, 5850–5861 (2015). DOI:10.1039/C5SM01116G
Schiller, U.D., A unified operator splitting approach for multi-scale fluid–particle coupling in the lattice Boltzmann method.Comput. Phys. Commun.185, 2586–2597 (2014). DOI:10.1016/j.cpc.2014.06.005
Fleury, J.-B., Schiller, U.D., Thutupalli, S., Gompper, G., Seemann, R., Mode coupling of phonons in a dense one-dimensional microfluidic crystal.New J. Phys.16, 63029 (2014). DOI:10.1088/1367-2630/16/6/063029
Pham, T.T., Schiller, U.D., Prakash, J.R., Dünweg, B., Implicit and explicit solvent models for the simulation of a single polymer chain in solution: Lattice Boltzmann vs Brownian dynamics.J. Chem. Phys.131, 164114 (2009). DOI:10.1063/1.3251771
Smiatek, J., Sega, M., Holm, C., Schiller, U.D., Schmid, F., Mesoscopic simulations of the counterion-induced electro-osmotic flow: A comparative study.J. Chem. Phys.130, 244702 (2009). DOI:10.1063/1.3152844
Dünweg, B., Schiller, U.D., Ladd, A.J.C., Progress in the understanding of the fluctuating lattice Boltzmann equation.Comput. Phys. Commun.180, 605–608 (2009). DOI:10.1016/j.cpc.2009.01.014
Dünweg, B., Schiller, U.D., Ladd, A.J.C., Statistical mechanics of the fluctuating lattice Boltzmann equation.Phys. Rev. E76, 36704 (2007). DOI:10.1103/PhysRevE.76.036704
Pobigaylo, N., Wetter, D., Szymczak, S., Schiller, U., Kurtz, S., Meyer, F., Nattkemper, T.W., Becker, A., 2006. Construction of a Large Signature-Tagged Mini-Tn5 Transposon Library and Its Application to Mutagenesis of Sinorhizobium meliloti.Appl. Environ. Microbiol.72, 4329–4337 (2006). DOI:10.1128/AEM.03072-05
Schiller, U.D., Steil, J.J., Analyzing the weight dynamics of recurrent learning algorithms.Neurocomputing63, 5–23 (2005). DOI:10.1016/j.neucom.2004.04.006
Conference Proceedings
Fleury, J.B., Schiller, U.D., Thutupalli, S., Gompper, G., Seemann, R., Microfluidic method to specifically excite transversal phonon modes in one dimensional microfluidic crystal.Proceedings of the 3rd European Conference on Microfluidics (2012).
Schiller, U.D., Steil, J.J., On the weight dynamics of recurrent learning.Proc. ESANN 2003, pp. 73–78 (2003).
Rüberg, S., Linke, B., Krol, E.E., Weidner, S., Schiller, U.D., Kurtz, S., Giegerich, R., Pühler, A., Becker, A., Construction of a microarray covering the Sinorhizobium meliloti 1021 genome. In: Finan, T., O’Brian, M., Layzell, D., Vessey, J., Newton, W. (Eds.), Nitrogen Fixation: Global Perspectives. Proceedings of the 13th International Conference on Nitrogen Fixation. Hamilton, Canada, p. 388 (2002).
Other Products
Maciorowski, M.L., Karthikeyan, N., Schiller, U.D., Finite Difference Methods for Transport Phenomena. Interactive Jupyter notebooks published on nanoHUB (2021). DOI:10.21981/55K0-ET30
Wang, F., Schiller, U.D., Back cover: Hysteresis in spreading and retraction of liquid droplets on parallel fiber rails.Soft Matter22, (2021).DOI:10.1039/D1SM90108G
Shealy, B.T., Srinath, A.T., Smith, M.C., Schiller, U.D., GPU Implementation of HemeLB. Open-source software implementation available on Github (2021). https://github.com/hemelb-codes/hemelb-gpu
Wang, F., Schiller, U.D., “Hysteresis in spreading and retraction of liquid droplets on parallel fiber rails” Open Data Analysis on Code Ocean (2021). DOI:10.24433/CO.4630860.v2
Wang, F., Schiller, U.D., Computational Characterization of Nonwoven Fibrous Media. Open Data Analysis published on Code Ocean (2020). DOI:10.24433/CO.6709443.v2